Cables that are exposed to fire while being expected to retain their functionality and provide power to essential equipment at another location must be appropriately selected and sized to take account of the increased electrical resistance at elevated temperature. Manufacturers offer cables and accessories that will survive a standard cellulose fire for 30, 60 or 90 minutes when correctly specified and installed.
Cables, including fire safety cables, are specified in terms that reflect their normal duty conditions; design parameters under fire conditions are rarely, if ever, specified. The objective of this paper is to provide a clear methodology for designing fire safety circuits based on the derivation and application of correction factors and standard cable parameters.
Cables that are exposed to fire while being expected to retain their functionality and provide power to essential equipment at another location must be appropriately selected and sized. This is not only a question of an appropriate insulation. Designers must take account of the increased electrical resistance at elevated temperature.
Manufacturers offer cables and accessories that will survive a standard cellulose fire for 30, 60 or 90 minutes when correctly specified and installed.
A first step to specifying a suitable fire safety cable is a good knowledge of the temperature rise characteristic in areas affected by the fire.
A second step is the correct selection and erection of the cable. This includes the correct sizing of the conductor. Cables, including fire safety cables, are specified in terms that reflect their normal duty conditions; design parameters under fire conditions are rarely, if ever, specified. The designer must take into account the consequent effects of the increased resistance on current carrying capacity, voltage drop, and short circuit capacity of the conductors. Special care should go to the current carrying capacity of the conductor if it is to supply electrically driven fire pumps drawing high starting currents. The circuit protection should also be adapted to fire conditions, as it must be designed to function with significant higher loop impedance than normal.
This paper provides a clear methodology for designing fire safety circuits based on the derivation and application of correction factors and standard cable parameters.
Having selected the appropriate cable, it must be installed properly, using suitable accessories and following the manufacturer’s restrictions.
Fire Cable Sizing - Application Note |
You're in the right place! Just drop us a message. How can we help?
Or see contact page